第一部分考試說明
一、考試性質(zhì)
《高等數(shù)學》是一門培養(yǎng)和提高學生科學素質(zhì)、科學思維方法、科學研究能力(抽象思維能力、邏輯推理能力、空間想象能力、運算能力和自學能力)和技術(shù)創(chuàng)新能力的重要基礎(chǔ)課?!陡叩葦?shù)學》是我校理學各學科碩士生入學考試科目之一。它的標尺是高等學校優(yōu)秀本科畢業(yè)生所能達到的水平,能夠檢驗學生是否具有綜合運用所學知識去分析問題和解決問題的能力,以保證被錄取者具有良好的高等數(shù)學理論基礎(chǔ)。
二、考試形式和試卷結(jié)構(gòu)
(一)試卷滿分及考試時間
試卷滿分為150分,考試時間為180分鐘.
?。ǘ┐痤}方式
答題方式為閉卷、筆試.
?。ㄈ┰嚲眍}型結(jié)構(gòu)
試卷題型結(jié)構(gòu)為:
計算題(60分)
解答題(包括證明題)(90分)
?。ㄋ模﹨⒖紩?br> 《高等數(shù)學》(七版),同濟大學應(yīng)用數(shù)學系主編,高等教育出版社.
第二部分考試內(nèi)容和要求
一、函數(shù)、極限、連續(xù)
函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關(guān)系的建立.
數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限與右極限,無窮小量和無窮大量的概念及其關(guān)系,無窮小量的性質(zhì)及無窮小量的比較,極限的四則運算,極限存在的兩個準則:單調(diào)有界準則和夾逼準則,兩個重要極限,函數(shù)連續(xù)的概念,函數(shù)間斷點的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì).
二、一元函數(shù)微分學
導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義和物理意義,函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,平面曲線的切線和法線,導(dǎo)數(shù)和微分的四則運算,基本初等函數(shù)的導(dǎo)數(shù),復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法,高階導(dǎo)數(shù),一階微分形式的不變性,微分中值定理,洛必達(L’Hospital)法則,函數(shù)單調(diào)性的判別,函數(shù)的極值,函數(shù)圖形的凹凸性、拐點及漸近線,函數(shù)圖形的描繪,函數(shù)的最大值和最小值,弧微分,曲率的概念,曲率圓與曲率半徑.
三、一元函數(shù)積分學
原函數(shù)和不定積分的概念,不定積分的基本性質(zhì),基本積分公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限的函數(shù)及其導(dǎo)數(shù),牛頓一萊布尼茨(Newton-Leibniz)公式,不定積分和定積分的換元積分法與分部積分法,有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分,反常(廣義)積分,定積分的應(yīng)用。
四、向量代數(shù)和空間解析幾何
向量的概念,向量的線性運算,向量的數(shù)量積和向量積,向量的混合積,兩向量垂直,平行的條件,兩向量的夾角,向量的坐標表達式及其運算,單位向量,方向角與方向余弦,曲面方程和空間曲線方程的概念,平面方程與直線方程,平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件,點到平面和點到直線的距離,球面、柱面、旋轉(zhuǎn)曲面、常用二次曲面的方程及其圖形,空間曲線的參數(shù)方程和一般方程??臻g曲線在坐標面上的投影方程.
五、多元函數(shù)微分學
多元函數(shù)的概念,二元函數(shù)的幾何意義,二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上多元連續(xù)函數(shù)的性質(zhì),多元函數(shù)的偏導(dǎo)數(shù)和全微分,全微分存在的必要條件和充分條件,多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法,二階偏導(dǎo)數(shù),方向?qū)?shù)和梯度,空間曲線的切線和法平面,曲面的切平面和法線,二元函數(shù)的二階泰勒公式,多元函數(shù)的極值和條件極值,多元函數(shù)的最大值、最小值及其簡單應(yīng)用.
六、多元函數(shù)積分學
二重積分與三重積分的概念、性質(zhì)、計算和應(yīng)用,兩類曲線積分的概念、性質(zhì)及計算,兩類曲線積分的關(guān)系,格林(Green)公式,平面曲線積分與路徑無關(guān)的條件,二元函數(shù)全微分的原函數(shù),兩類曲面積分的概念、性質(zhì)及計算,兩類曲面積分的關(guān)系,高斯(Gauss)公式,斯托克斯(Stokes)公式,散度、旋度的概念及計算,曲線積分和曲面積分的應(yīng)用
七、無窮級數(shù)
常數(shù)項級數(shù)收斂與發(fā)散的概念,收斂級數(shù)和的概念,級數(shù)的基本性質(zhì)與收斂的必要條件,幾何級數(shù)與p級數(shù)及其收斂性,正項級數(shù)斂散性的判別法,交錯級數(shù)與萊布尼茨定理,任意項級數(shù)的絕對收斂與條件收斂,函數(shù)項級數(shù)收斂域與和函數(shù)的概念,冪級數(shù)及其收斂半徑、收斂區(qū)間(指開區(qū)間)和收斂域,冪級數(shù)的和函數(shù),冪級數(shù)在其收斂域上的基本性質(zhì),簡單冪級數(shù)和函數(shù)的求法,初等函數(shù)的冪級數(shù)展開式,函數(shù)的傅里葉(Fourier)系數(shù)與傅里葉級數(shù),狄利克雷(Dirichlet)定理,傅里葉級數(shù),正弦級數(shù)和余弦級數(shù).
八、常微分方程
常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線性微分方程,伯努利(Bernoulli)方程,全微分方程,可用簡單的變量代換求解某些微分方程,可降階的高階微分方程,線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,二階常系數(shù)齊次線性微分方程,高于二階的某些常系數(shù)齊次線性微分方程,簡單的二階常系數(shù)非齊次線性微分方程,歐拉(Euler)方程,微分方程的簡單應(yīng)用.
以上內(nèi)容來源網(wǎng)絡(luò),僅供參考!
以上是小編整理的關(guān)于【2024年西安郵電大學601高等數(shù)學考研大綱匯總!】的全部內(nèi)容,如果想要了解更多關(guān)于院校選擇、專業(yè)選取、就業(yè)問題等,可直接點擊下方咨詢,由專業(yè)老師為您一對一解答!